Cite This        Tampung        Export Record
Judul Forecasting and Predictive Analytics : With ForecastX (TM) / Barry Keating, J. Holton Wilson
Pengarang Keating, Barry
Wilson, J. Holton
EDISI 7th ed
Penerbitan Boston : McGraw-Hill education, 2019
Deskripsi Fisik xix, 567 p. :ill. ;24 cm.3
ISBN 978-1-260-08523-5
Subjek BUSINESS FORECASTING
Catatan 557-567
Contents 1. Introduction to business forecasting and predictive analytics 2. The forecast process, data considerations, and model selection 3. Extrapolation 1, moving avarages and exponential smoothing 4. Extrapolation 2, introduction to forecasting with regression trend models 5. Explanatory models 1. Forecasting with multiple regression causal models 6. Explanatory models 2. Time-series decomposition 7. Explanatory models 3. ARIMA (Box-Jenkins) forecasting models 8. Predictive analytics: Helping to make sense of big data 9. Classifification models: The most used models in analytics 10. Ensemble models and clustering 11. Text mining 12. Forecast/Analytics implementation
Bahasa Inggris
Bentuk Karya Bukan fiksi atau tidak didefinisikan
Target Pembaca Umum

 
No Barcode No. Panggil Akses Lokasi Ketersediaan
207722212 658.401 2 Kea f-2 Dapat dipinjam Perpustakaan Pusat - RBU KKB
Koleksi Umum
Tersedia
pesan
265622212 658.401 2 Kea f-3 Dapat dipinjam Perpustakaan Pusat - RBU KKB
Koleksi Umum
Tersedia
pesan
Tag Ind1 Ind2 Isi
001 INLIS000000000149777
005 20221222030008
007 ta
008 221222################g##########0#eng##
020 # # $a 978-1-260-08523-5
035 # # $a 0010-1122000145
082 # # $a 658.401 2
084 # # $a 658.401 2 Kea f
100 0 # $a Keating, Barry
245 1 # $a Forecasting and Predictive Analytics : $b With ForecastX (TM) /$c Barry Keating, J. Holton Wilson
250 # # $a 7th ed
260 # # $a Boston :$b McGraw-Hill education,$c 2019
300 # # $a xix, 567 p. : $b ill. ; $c 24 cm.3
504 # # $a 557-567
505 # # $a Contents 1. Introduction to business forecasting and predictive analytics 2. The forecast process, data considerations, and model selection 3. Extrapolation 1, moving avarages and exponential smoothing 4. Extrapolation 2, introduction to forecasting with regression trend models 5. Explanatory models 1. Forecasting with multiple regression causal models 6. Explanatory models 2. Time-series decomposition 7. Explanatory models 3. ARIMA (Box-Jenkins) forecasting models 8. Predictive analytics: Helping to make sense of big data 9. Classifification models: The most used models in analytics 10. Ensemble models and clustering 11. Text mining 12. Forecast/Analytics implementation
650 # # $a BUSINESS FORECASTING
700 0 # $a Wilson, J. Holton
990 # # $a 207722212
990 # # $a 207722212
990 # # $a 265622212
990 # # $a 265622212
Content Unduh katalog