Cite This        Tampung        Export Record
Judul Bayesian Analysis of Failure Time Data Using P-Splines / Matthias Kaeding
Pengarang Kaeding, Matthias
EDISI 1
Penerbitan Abraham-Lincoln-Straße 46 65189, Wiesbaden, Germany : Springer Fachmedien Wiesbaden, 2015
Deskripsi Fisik 110 :ill
ISBN 978-3-658-08393-9
Subjek PROBABILITY THEORY AND STOCHASTIC PROCESSES
LABORATORY MEDICINE
BIOINFORMATICS
Abstrak Matthias Kaeding discusses Bayesian methods for analyzing discrete and continuous failure times where the effect of time and/or covariates is modeled via P-splines and additional basic function expansions, allowing the replacement of linear effects by more general functions. The MCMC methodology for these models is presented in a unified framework and applied on data sets. Among others, existing algorithms for the grouped Cox and the piecewise exponential model under interval censoring are combined with a data augmentation step for the applications. The author shows that the resulting Gibbs sampler works well for the grouped Cox and is merely adequate for the piecewise exponential model.
Bentuk Karya Tidak ada kode yang sesuai
Target Pembaca Tidak ada kode yang sesuai
Lokasi Akses Online http://link.springer.com/openurl?genre=book&isbn=978-3-658-08392-2

 
No Barcode No. Panggil Akses Lokasi Ketersediaan
193315292 610 Kae b Baca Online Perpustakaan Pusat - Online Resources
Ebook
Tersedia
Tag Ind1 Ind2 Isi
001 INLIS000000000159374
005 20250318100202
007 ta
008 250318################|##########|#|##
020 # # $a 978-3-658-08393-9
035 # # $a 0010-0325000993
082 # # $a 519.2
084 # # $a 519.2 Kae b
100 0 # $a Kaeding, Matthias
245 1 # $a Bayesian Analysis of Failure Time Data Using P-Splines /$c Matthias Kaeding
250 # # $a 1
260 # # $a Abraham-Lincoln-Straße 46 65189, Wiesbaden, Germany :$b Springer Fachmedien Wiesbaden,$c 2015
300 # # $a 110 : $b ill
520 # # $a Matthias Kaeding discusses Bayesian methods for analyzing discrete and continuous failure times where the effect of time and/or covariates is modeled via P-splines and additional basic function expansions, allowing the replacement of linear effects by more general functions. The MCMC methodology for these models is presented in a unified framework and applied on data sets. Among others, existing algorithms for the grouped Cox and the piecewise exponential model under interval censoring are combined with a data augmentation step for the applications. The author shows that the resulting Gibbs sampler works well for the grouped Cox and is merely adequate for the piecewise exponential model.
650 # # $a BIOINFORMATICS
650 # # $a LABORATORY MEDICINE
650 # # $a PROBABILITY THEORY AND STOCHASTIC PROCESSES
856 # # $a http://link.springer.com/openurl?genre=book&isbn=978-3-658-08392-2
990 # # $a 193315292
Content Unduh katalog